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Polymorphous computer architectures (PCA) are new computer architectures being 
developed under a DARPA/IPTO program to support mission agility for future high 
performance DoD embedded applications. These new architectures will have the ability 
to “morph” into different modes of execution with the goal of delivering uniform, high 
performance across a large variety of different processing types and workload 
compositions. Examples of these architectures include the MIT RAW machine [5], the 
Stanford Smart memories project [3], and the University of Texas TRIPS machine [4].  
 
To evaluate the applicability of PCA to next generation ISR (intelligence, surveillance, 
reconnaissance) applications, MIT Lincoln Laboratory has developed example 
applications and kernel benchmarks that span the space of embedded ISR application 
requirements. Matlab code for an example ISR application, with elements of feature-
aided tracking [6], is being analyzed by teams developing PCA architectures. In addition, 
seven kernel benchmarks that represent important pieces of this application have been 
defined. These seven kernels are FIR filter, singular value decomposition, constant false-
alarm rate (CFAR) detection, corner turn, pattern matching, graph optimization via 
genetic algorithm, and database search.  
 
An important first step in evaluating PCA architectures is the implementation of these 
kernel benchmarks on processors used in modern embedded applications. This 
implementation provides a baseline for future comparisons. MIT/LL has implemented 
these seven kernels on the PowerPC G4 processor. The results show that the throughput 
varies considerably from kernel to kernel. This variation in performance is reflected in a 
metric known as stability. Defined by Kuck [2], stability is the ratio of the minimum to 
the maximum throughput for a particular set of problems. A chief benefit of PCA 
architectures is expected to be their stable performance across a range of kernels and data 
sizes. 
 
Hoffman [1] has implemented convolution and many other kernels on the RAW 
simulator using scalable systolic algorithms. Hoffmann’s throughput results for real 
convolution on a simulated 250 MHz RAW are shown in Figure 1 and compared with a 
similar kernel on a 500 MHz G4. Both machines have a peak throughput rated at 4 
Gflops/sec. Clearly, the simulation results show that RAW has the potential to perform 
much better than the G4 on this kernel. 
 
In this talk, we present and analyze performance results for several PCA kernels on the 
MIT RAW simulator and on a RAW test board. We compare these with the baseline 
performance results obtained on the PowerPC G4 in terms of throughput, stability, 
efficiency and power efficiency. 
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Systolic Dedicated co-processors

Distributed CacheSIMD

Polymorphous Computing
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• Regular, deterministic operations
• Constant flow of input data

Threaded processingStream processing

1morph \’mor-()f\ n : re-structuring of tiles for optimized processing
1morph \’mor-()f\ n : re-structuring of tiles for optimized processing

2morph \’mor-()f\ vt : to re-structure tiles for optimized processing
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Outline

• Introduction 
• Kernel Benchmarks and Metrics
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Kernel Synthesis from Application 
Survey

Signal/Image Processing
• FIR Filter
• SVD
• CFAR Detection

Communication
• Corner Turn

Information/Knowledge Processing
• Graph Optimization
• Pattern Recognition
• Real-time Database Operations

“Front-end Processing” “Back-end Processing”
• Data independent, stream-oriented
• Signal processing, image 

processing, high-speed network 
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• Examples: 
– pulse compression
– adaptive beamforming
– target detection

• Data dependent, thread oriented
• Information processing, 

knowledge processing
• Examples:

– workload optimization
– target classification
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Kernel Performance Evaluation

• Floating point 
and integer ops

• Latency
• Throughput
• Efficiency
• Stability
• Density and 

cost
–Size
–Weight
–Power

MIN(Throughput)
MAX(Throughput)

Workload (FLOPS or OPS)
Execution time (seconds)

Throughput
Hardware Peak

Kernel Benchmarks Performance Metrics Definitions

Signal/Image Processing
• FIR Filter
• SVD
• CFAR Detection

Communication
• Corner Turn

Information/Knowledge 
Processing

• Graph Optimization
• Pattern Recognition
• Real-time Database 

Operations

RAWPowerPC(G4) Smart Memory TRIPS MONARCH



MIT Lincoln LaboratoryPCAKernels-8
JML 24 Sep 2003

Throughput-Stability Product
A New Kernel Metric

Workload (FLOPS or OPS)
Execution time (seconds)

Throughput

For a given application, PCA 
processors should achieve higher 
product of throughput and stability 
than conventional processors

For a given application, PCA 
processors should achieve higher 
product of throughput and stability 
than conventional processors

Interval Stability
MINI(Throughput)
MAXI(Throughput)

Throughput x Stability
• rewards consistent high performance 
• penalizes lack of performance or lack of consistency 
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• Programming PCA Architectures
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High Performance Programming: 
Conventional vs. PCA Processors

PowerPC(G4) Raw

Characteristics:

• Rigid memory hierarchy

• Rigid datapath

• Specialized Structures

High Performance Programming:

• Change algorithm to match 
memory hierarchy

• One degree of freedom

• Can only work with blocking factor

Characteristics:

• Flexible memory hierarchy

• Flexible datapath(s)

• Generic Structures

High Performance Programming:

• Co-optimize algorithm and 
architecture 

• Many degrees of freedom

• Optimize time/space tradeoff

PCA provides more degrees of freedom, and thus greater flexibility 
(morphability) and greater performance over a range of applications

PCA provides more degrees of freedom, and thus greater flexibility 
(morphability) and greater performance over a range of applications
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Kernel Benchmarks and the
PowerPC G4

PowerPC G4 7410 Specs
– 500 MHz Clock rate
– 4 Gflop/s peak
– 125 MHz main memory bus
– L1 cache: 32 kB, on chip
– L2 cache: 2MB, 250 MHz bus
– Mercury daughtercard L2 Cache

Main Memory

• Two predictors of kernel performance:
• Programmer’s maximization of data reuse and locality (blocking factor)
• Memory hierarchy of G4

• Blocking factor determines max achieved performance
• Memory hierarchy determines shape of performance curve
• Want to maximize blocking factor to limit memory hierarchy 

bottleneck
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FIR Filter (G4)

FIR Filter Throughput (MFLOPS/sec)
2000

1000

0
64128 512 2K 8K 32K 128K 512K

Vector Length

PowerPC G4 (Mercury)
• 500 MHz
• Peak: 4 GFLOPS/sec

Number of filters = 4
Filter size = 16

Level 1 
Cache

Level 2 
Cache

*Implemented with VSIPL Real FIR Filter

Caches are performance bottlenecks
– Performance curve changes when cache is full
– Product metric penalizes G4 for performance 

drop at cache boundaries

Caches are performance bottlenecks
– Performance curve changes when cache is full
– Product metric penalizes G4 for performance 

drop at cache boundaries

FIR Throughput ? Stability

Level 1 
Cache

Level 2 
Cache

Number of filters = 4
Filter size = 16

Mean Efficiency:  29%Mean Efficiency:  29%
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Baseline Performance Measurements:
Throughput and Stability

PowerPC G4 (Mercury)
• 500 MHz
• 32 KB L1
• 2 MB L2
• Peak: 4 GFLOPS/sec

Data Set and Overall StabilityThroughput 

Data Set Stability:
Ratio of minimum to maximum over all 
data set sizes for a particular kernel

Overall Stability: Ratio of minimum to maximum over all 
floating-point kernels&all data set sizes
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Stream Algorithms for Tiled 
Architectures

M(R) edge 
tiles are 
allocated to 
memory 
management

P(R) inner tiles 
perform 
computation 
systolically using 
registers and static 
network

Systolic Morph

lim E(? ,R) = 1
? ,R ? ?

Compute Efficiency Condition:

where ? = N/R

R
E (N,R)  =

C(N)

T(N,R)*(P(R) + M(R))

Stream Algorithm Efficiency:

where
N = problem size
R = edge length of tile array
C(N) = number of operations
T(N,R) = number of time steps
P(R) + M(R) = total number of processors

Stream algorithms achieve high efficiency by 
optimizing time space tradeoff – tailoring 

memory hierarchy and datapaths to specific 
needs of application

Stream algorithms achieve high efficiency by 
optimizing time space tradeoff – tailoring 

memory hierarchy and datapaths to specific 
needs of application

TimeTime SpaceSpace
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Time Domain Convolution on RAW

Each row 
performs a 
number of 
K tap filters

RAW Chip with R rows and 
R+2 columns:
Number of filters = R
Number of memory tiles:

M = 2*R
Number of processing tiles:

P = R2

Systolic Array 
for K Tap Filter

Manage 
Input 

Vectors

Manage 
Output 
Vectors

Stream algorithms achieve high performance by removing 
memory access bottleneck from computational critical path

Stream algorithms achieve high performance by removing 
memory access bottleneck from computational critical path
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FIR Filter (RAW)
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4

3

2

1

0
64 128 256 512 1K 2K 4K 8K

Vector Length
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Throughput * Stability

Raw implements the appropriate memory hierarchy for the problem
Raw’s Throughput x Stability score stays high

Raw implements the appropriate memory hierarchy for the problem
Raw’s Throughput x Stability score stays high
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Outline

• Introduction 
• Kernel Benchmarks and Metrics
• Programming PCA Architectures
• Case Study: SVD Kernel 
• Conclusions
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Singular Value Decomposition (SVD)

• SVD is becoming more widely used in signal and image 
processing

– Important for spectral analysis
– Can also be used for adaptive beamforming, especially for ill-

conditioned problems
• SVD kernel implementation is a Reduced SVD that begins 

with a QR factorization if M > N
– Uses Modified Gram-Schmidt QR factorization
– Many possible optimizations, especially block factorization
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SVD Results (G4)

SVD Throughput (Mflop/s)

PowerPC G4 (Mercury)
• 500 MHz
• Peak: 4 GFLOPS/sec

SVD Throughput ? Stability

• Reduced SVD of a 16-column complex matrix
• Begins with MGS QR factorization (needs A+R)
• L1 cache drives inner loop performance

– 1: A+R fills L1 cache
– 2: One column of A is half of L1 cache

1 2 1 2

Mean Efficiency:  16%Mean Efficiency:  16%
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Modified Gram-Schmidt QR Results (G4)

MGS Throughput (Mflop/s)

PowerPC G4 (Mercury)
• 500 MHz
• Peak: 4 GFLOPS/sec

MGS Throughput ? Stability

• Modified Gram-Schmidt QR factorization of a 16-
column complex matrix

• MGS is about 60% of SVD time
• L1 cache drives inner loop performance

– 1: A+R fills L1 cache
– 2: One column of A is half of L1 cache

1 2 1 2

Mean Efficiency: 12%Mean Efficiency: 12%
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SVD for RAW Architecture

• Goal is to match problem size and architecture
• Use 2D systolic morph 

– maximizes time/space efficiency
– uses architecture in a scalable way

• Uses efficient QR/LQ approach to get to 
banded form
– Fast Givens approach for QR/LQ
– Decoupled algorithm with good parallelism

• Banded form matches array dimension of 
systolic morph
– provides high locality for reduction to 

bidiagonal form
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Raw implementation 
seeks to efficiently match 

the many possible 
algorithms to the many 
possible architectural 

configurations

Raw implementation 
seeks to efficiently match 

the many possible 
algorithms to the many 
possible architectural 

configurations

Memory Tiles
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RAW and G4 Results:
Fast Givens QR Factorization

The QR performance demonstrates the benefit of the PCA 
approach on matrix algebra operations

The QR performance demonstrates the benefit of the PCA 
approach on matrix algebra operations

The QR is a key sub-kernel of the SVDThe QR is a key sub-kernel of the SVD
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• 2 MB DRAM
• High Speed I/O
• USB Interface
• Daughtercard
• High Speed A/D

RAW Test Board
(October 2003)

Lincoln Laboratory PCA Testbed

PCI bus

DSP/ FPGA

SBC

G4 DSP
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High
Speed
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Annapolis 
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• Kernel performance 
evaluation

• Application morphing 
demonstration

• High-level software 
prototyping

• Kernel performance 
evaluation

• Application morphing 
demonstration

• High-level software 
prototyping

Test Bed Architecture

Test Bed Objectives

Intel PC
• Dual processor
• 66 MHz/64-bit 

wide PCI bus
• Running Linux

Unit 
under 
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Ethernet LAN
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Conclusions

• MIT Lincoln Laboratory has defined kernel benchmarks for 
the PCA program

– Multiple categories of processing
– Based on DoD application needs

• Establishing a performance baseline on conventional 
architectures

– Performance is limited by the blocking factor and by the 
memory hierarchy

– Example: CFAR – low ops/byte, 3% efficiency: FIR – high 
ops/byte, 29% efficiency

• PCA processors allow opportunities for high performance 
– Performance achieved through co-optimization of the 

algorithm and the architecture
– Example: unusual SVD algorithm leads to high performance 

on Raw
– The greater degree of freedom allows greater optimization 

across a variety of problem domains
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